
DOE/NASA/0097 80/ 1 
NASA CR- 1 652 1 8 

REQUIREMENTS FOR OPTIMIZATION OF ELECTRODES AND 
ELECT?OLYTE FOR THE IRON/CHROMIUM REDOX FLOW CELL 

b 

b'irtod Jalon 
Herbert Stork 
Jose Giner 

GINER, INC. 
14 Spring Street 
Wolthom, Mossochusettr 021 54 

SEPTEMBER 1981 

Prepared for 
NATIONAL AERONAUTICS AND SPACE ADMlN 
Lewis Research Center 
Under Contract DEN3-97 

b 

for 

U. S. DEPARTMENT OF ENERGY 
ENERGY TECHNOLOGY 
ENERGY STORAGE SYSTEMS DIVISION 



DOE/ NASA,'0097 80/ 1 
NASA CR- 1 652 1 8 

REOUIREMENTS FOR OPTIMIZATION OF ELECTRODES AND 
ELECTROLYTE FOR THE IRON/CHRONIIUM REDOX FLOW CELL . 
Vinod Jalon 
Herbert Stark 
Jose Gii sr 

GINER, INC. 
14 Spring Street 
Waltham, Massachusetts 02 154 

SEPTEMBER 1981 

Prepared for 
NATIONAL AERONAUTICS ANC SPACE ADMINISTRATION 
Lewis Research Center 
C l  eve1 and, Ohio 44135 
Under Contract  DEN3-97 

for 

U. S. DEPARTMENT OF ENEZtGY 
ENERG t TECHNOLOGY 
ENERGY STORAGE SYSTEMS DIVISION 
Washington, D.C. 20545 
Under [nteracency Agreement DE-A I-04-80-AL-12726 



TABLE OF CONTENTS 

ABSTRACT 

EXECUTIVE SUMMARY 

I. I NTROOUCT I ON 

I I . OVERVIEW OF PREVIOUS WORK 

A. So lub i l i t y  of CrCl2 and CrC13 i n  HC1 

8. Stabi l  i t y  of Chromous ion 

C. Electrode Material Evaluation 

I I I. THE EFFECT OF ELECTROLYTE IMPURITIES ON THE Cr(1 I I ) /Cr ( I  I ) 
RE WX REACTION 

A. The Effect of Fe(l1) on the Reduction of Cr ( I I1 )  a t  a 
Au/Pb Codeposi ted Electrode 

8. The Ef fec t  o f  A l ( I I 1 )  on the Reduction o f  C r ( I I 1 )  a t  a 
Au/Pb Codeposi ted Electrode 

C. Comparison o f  Fisher and McGeon Chromic Chloride 
Solutions 

I V .  INVESTiGATION OF THE COMPLETE FeICr REDOX SUBSULE CELL 

A. Subscale Description 

8. Polar izat ion Measurements i n  Complete Cell  

V .  INVESTIGATION OF ELECTRODE PREPARATION PROCEDURES 

A. Physical Characterization 

B. Act ivat ion by "Standard" Procedure 

C. Electrochemical Screening of Fe l ts  Activated by 
Standard Procedures 

D. Improved Catal yzat i  on Processes 

V I .  INVESTIGATIONOFTHECr(III)/Cr(II)REDOXREACTIONBY 
CYCLIC VOLTAMMETRY 

A. Hydrogen Evolution and Pb Deposition on Carbon 

B. dydrogen Evolution and Pb Deposition on Au on Carbon 

C. Chromic Chloride Reduction on C, Pb, and AuIPb 

V I I. BISMUTH: AN ALTLaNATE ELECTROCATALYST FOR Cr( I I I )/Ct-( I I ) 

A. S t a b i l i t y  

B. Gismuth on Carbon Electrode 

C. GoldIBismuth Electrode 

V I I I . SIGNIFICANT RESULTS AND COMCLGS IONS 

I X . RECOMMENDAT IONS FOR FUTURE YORK 

Page No. 
v i  i 

v i i i  

X .  REFERENCES 



TABLE OF CONTENTS (con ' t )  

X I .  APPENDICES 
A .  Standard Thermal Gold Plating Method 

8. Alcohol Assisted Gold Deposition Method for 
Making F e l t  Electrodes 



LIST OF TABLES 

Table - T i t l e  - 
IV-1 Redox Cell  Test i  ng 

IV-2 Cell  Polar izat ion 

V-1 Physical Propertiez of Fel t s  "as Received" 

V-2 H2 Evolution on Carbon Fel ts  a t  Each Stage of 

Standard Activation Procedure 

VIII-1 Roles of  C, Au and Fb on C r ( I I I ) / C r ( I I )  Reactions 

Page 



LIST OF FIGURES 

Figure Page 

S- 1 Hydrogen Evolution and Cr( I I I ) Reduction on Three Carbon 
Fe l ts  a f te r  Standard Act ivat ion i x 

Progressive Improvements i n  the Catal yzat ion Techniques - 
Hz Evolution Character ist ics of 8/79 Fe l ts  x i  

Cycl ic Vol tamnogram of Cr( I 1  I ) /Cr ( I  I ) Reaction a t  Lead x i  i 

Cycl i c  Vol tmogram o f  Lead Deposi t ion-Dissolut ion a t  Gold x iv  

Cycl ic Vol tamnogram o f  C r ( I I I ) / C r ( I I  ) Reaction a t  GoldILead x v 

Chromous Chloride S o l u b i l i t y  i n  HC1 3 

Chromic Chloride/Chromous Chloride Redox Characterization of Au/Pb 5  

Effect o f  Fe(I1) Upon Cr ( I I1 )  Reduction a t  Au/Pb 7 

Ef fec t  o f  A l ( I I 1 )  Upon Cr ( I I 1 )  Reduction a t  Au/Pb 9 

Electrochemical Behavior o f  Fisher and McGeon Chromi um 
Chloride Elect ro ly tes 

Performance Cmparison o f  Reagent Grade and Technical 
Grade Chromium Chloride 

Subscale Flow Cell System 13 

Hal f -Cel l  Configuration 22 

Hydrogen Evolution and Cr ( I I 1 )  Reduction on Bare Carbon Fe l t  2 6 

V-3 Hydrogen Evolution and C r  ( I I I ) Reduction After Standard 
Act ivat ion of Carbon F e l t  2 7 

V-4 Comparison o f  Three Carbon Fel t s  

V-5 Comparison o f  Carbon and Graphite Fel ts  

V-6 Effects o f  HN03 Normalization Treatment 

V-7 Effects o f  Alcohol Assisted Gold Impregnation 

V-8 Progressive Improvements i n  the Catalyzation Techniques 35 

VI-1 Cyclic Vol tamnogram of Lead Oeposi t ion-Dissolut ion Reaction 
a t  Carbon F e l t  3  9 

V 1-2 Hydrogen Evolution a t  Gold on Carbon Fe l t  40 

VI-3 Mu1 ti -Cycle Vol tamnogram of Lead Deposi t ion-Di ssolut ion 
Reaction a t  Gold on Carbon 4 1 



LIST OF FIGURES (con't) 

Figure 

VI-4 Cyclic Voltamnogram of Cr(III)/Cr(II) Reaction on 
Bare Carbon 

Cyclic Vol tamtogram of Cr( I I I )/Cr( I I ) Reaction at Lead 

Steady State Cyclic Vol tamnogram of Cr(I1 I)/Cr(I I ) Reaction 
at LeadIGold 

Multi-Cycle Voltamnogram of Cr(III)/Cr(II) Reaction at 
Go1 d/Lead 

Stabi 1 i ty of Bismuth and Lead El ectrocatalysts 

Hydrogen Evolution and Cr(I1I) Reduction, llith PbCl? 
and With BiClj 

Cyclic Voltamnogrm of Cr(III)/Cr(II) Reaction at Au/Bi . 
Base1 i ne Activation Procedure 

Page 



ABSTRACT 

With the recent technological developments, the i ronlchromi m redox f 1 ow c e l l  

hes become an a t t rac t i ve  system for  bulk eneray storage application. Ear l ie r  

investigations a t  Giner, Inc. had established tha t  the s o l u b i l i t y  and s t a b i l i t y  o f  

aqueous acidic solut ion of Cr(1 I ) and Cr ( I I1 )  chlorides are suf f ic ient  f o r  redox 

applications and had resulted i n  a number of f indings which have enhanced the 

attractiveness of the C r ( l I I ) /C r ( I I )  vs. Fe(1 I 1  )/Fe( 11 ) redox cell. The Giner, Inc. discovered 

goldl lead combination electrocatalyst  has proved t o  be the only system t o  date tha t  

provides both high a c t i v i t y  f o r  the C r I I I / C r I I  redox reaction and very high hydrogen 

overvol tage. A combination of gold and lead deposited on a porous carbon f e l t  

structure provided a pract ical  electrode f o r  the C r  side for  the redox f low ce l l .  

A study t o  characterize dif ferent f e l t  materials revealed tha t  the d i f f i c u l t i e s  

encountered by NASA wi th appl ication of e lectrocatalyst  to  a batch of carbon f e l t  

material were caused by non-reproduci b i  1 i t y  of the vendor s u ~ p l  ied f e l t ,  mostly 

wi th  respect t o  t i s  gold uptake capabi l i t ies.  We found that  a normalization treatment - 
?recleaning the "poor" substrate material wi th d i l u t e  n i t r i c  acid - i n  conjunction 

wi th the use of very d i  1 u te  gold chloride solutions, produced substantial imnrovements. 

Improved catal yza t i  on techniques were devel oped that  included a pretreatment 

o f  carbon substrates and provided a "normalized" carbon surface f o r  uniform gold 

deposition. This permitted ef f ic ient  use of the di f ferent  batches of carbon f e l t  

materials which i n i t i a l l y  vary s ign i f i can t l y  i n  t h e i r  physical and surface chemical 

properties, as we1 1 as t h e i r  electrochemical behavior. Further modification (an 

alcohol assisted method) o f  the gold impreqnation technique gave fur ther  improvement 

and t o  date the best performing electrodes. 

I n  addi t ion t o  l i near  sweep voltanmetry, cyc l i c  v o l t m e t r y  has been used t o  

determice the effects of d l  fferent act ivat ion procedures on the Cr( I I 1  ) /C r ( I I  ) 

redox and hydrogen evolut ion reactions. Attempts are made t o  ident i fy  the roles o f  

carbon, gold, and lead i n  the overal l  redox cycle. The behavior o f  the electrodes 

a t  both normal battery operatinq potent ia ls and more extreme potent ia ls i s  discussed 

wi th the implications for preparing ef f ic ient  and stable electrodes f o r  the energy 

storage battery. 
v i  i 



EXECllTIVE SUMMARY 

The redox flow c e l l  program a t  Giner, Inc. p r i o r  t o  th i s  study resulted i n  

a ntimberof findings wh Tch enhanced the attractiveness crf the Cr ( I I I ) /Cr ( I  I) vs. Fe(I1I ) /  

Fe( 11) redox c e l l  as an enerqy storage concept; i n  part icular  the discovery that small 

quantit ies of lead and gold added t o  the chromium electrode can substantial ly 

improve the behavior of th i s  electrode. Both gold and lead act as catalysts f o r  

the chromium reaction. An additional function o f  the lead i s  t o  mi.: imizr! hydrogen 

evo .ion by covering the gold surface during charging, since Au has low hydroc,er, 

overvol tage and Pb high overvol tage. Some fract ion of the lead may deplate during 

discharge but i t  replates upon charge. Si lver and copper can replace the gold, 

but are not as satisfactory. 

Thi s e l  ectrocatal ys t combi na ti on was appl i ed by NASA-LeRC to  porous e l  ectrodes 

made of carbon f e l t .  After i n i t i a l  success i t  was discovered a t  :USA that  a new 

batch of  carbon f e l t  supplied by the same vendor (Fiber Materials, Inc.) displayed 

s igni f icant  hydrogen evol ut ion and evidence of improper catal yzat i  on. A compari son 

of three batches of carbon fe l t s  catalyzed by the impregnation/thermal decomposition 

technique i s  shown i n  Figure S - I .  Clearly there were large differences i n  hydrogen 

evolution currents; the chromium reduction currents remained about the same. 

Characterization o f  d i f t2 rent  carbon f e l t  materials revealed sign'l icant 

differences i n  the i r  physical and surface chemical properties. The most signigicant 

difference was found t o  be the extent of gold pick up by di f ferent  fe l t s  from an aqueous 
2 solution of gold chloride; the "good" f e l t  had hicked up only 20 ug Au/m whereas 

the "poor" f e l t  exhausted the solut ion picking up gold which amounted to  about 60 

2 ug Au/un . 
We believed that  the increased gold take up was due t o  excessive reducing 

groups on the surface o f  the 8/79 poor carbon fe l t s .  A d i l u t e  n i t r i c  acid soak. as a 

precleaning step, was used to  oxidize the reduci ncr orouos. Such a treatment i n  
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conjunction w i th  the use of a d i l u t e  gold solut ion for  impregnation gave s fgn i f i cant  

improvement i n the performance. Further improvements i n  the electrode performance 1( 

were real ized by an alcohol-assisted imoregnatioe technique combined wi th a preclean- 

ing step using KOH. These improvements were validated by f u l l  c e l l  tests a t  N f l c A -  

LeRC and shown i n  Figure S-2. 

I n  order t o  optimize t h i s  electrode system and t o  establ ish long term stabi 1 it.v 

of these electrodes. i t  was necessary t o  i d e n t i f f  the ro les  o f  carbon, gold ana 

lead for the C r ( I I I ) / C r ( I I )  redox reaction. For t h i s  purpose we used cyc l i c  

vol tanmetry techni ques . 
Carbon: Very l i t t l e  ti2 evolut ion was observed on p l a i n  carbon f e l t  i n  HCl .  A p l a i n  

f e ' t  electrode was then cycled i n  0.2M Cr( I I1 )  solution. Very small amounts o f  Cr(I11) 

were reduced. Essential ly no "(11) was oxidized i n  the prac t ica l  range o f  battery 

operation. A t  very high polarizations, however, Cr(I1) d i d  oxidize on carbon, but 

i n  a complex manner which i s  not understood. The mu1 t i p l e  peaks are probably due 

t o  the inhomogeneous surface of carbon f e l t  (Figure S - 3 ) .  

Lead: Lead deposit ion-dissolution was studied by int roduct ion c f  PbCl t o  an HCI  - - 
solution. Very clean deposit ion and d issolut ion peaks were observed. We found a 

complete absence of reactions a t  higher potent ia ls  ind ica t ing  tha t  no under potent ia l  

deposited (UPD) lead i s  formed on carbon f e l t .  This e lec t ro l y te  kiss made 0.214 i n  Cr(1 I I ) . The 

r e s u l t i n g v o l t m o g r a m i s  shownin Figures-3. A t  -60OnV, coincident wi th lead deposition, we 

saw large amounts of C r ( I I 1 )  reductfon. This very c lea r l y  established tha t  bulk 

lead i s  an act ive cata lyst  f o r  chromium reduction. Essent ia l ly  revers ib le oxidat ion 

o f  chromium occurred on the lead surface but coincident w i th  lead d issolut ion there 

was a precipitous drop i n  the chromium oxidation reaction. Carbon i s  t o t a l l y  

inact ive f o r  Cr(1 i )  oxidat ion a t  t h i s  potenital .  A t  higher overvoltages once again 

chromium oxidat ion proceeded i n  a complex manner. The essential features of 

chromium oxidat ion peaks i n  t h i s  higher potent ia l  range remained the same as tha t  

on p la in  carbon fe l t .  
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Scan Rate = 10 mV/sec 

I ' 

V (mV vs. SCE) 

Figure 5-3: Steady State V o l t m o g r m  of C r ( l I I ) / C r ( I I )  
Reaction a t  Lead on Carbon F e l t  Electrode. 

x i i  



Gold: As expected, the hydrogen evdlutf on reaction on a clean gold-on-carbon f e l t  - 
i s  substantial. As before Pb(I1) ions were introduced in to  the electrolyte by adding 

s ma1 1 volume of concentrated lead chloride solution. The interesting portion o f  

the voltwmogram i s  shown i n  Figure S-4. As expected, the hydrogen evolution was 
I 

reduced. The deposition-dissolution reaction of lead was resolved from hydrogen 

evolution reaction so that some correlation of the lead deposition and hydrogen 

evolution m c t i o n s  can be made. It i s  important t o  note that as successive cycles 

are performed, the amount of lead deposited decreased, bur; the hydrogen evolution 

reaction i s  unchanged. Results are presented t o  show that very small amounts o f  lead 

corresponding to monolayer or cven submonolayer coverage of go? 'i are suff ic ient t o  
i 

effect 1 arge decreases i n  hydrogen evolution. 

Figure S-5 i s  a mu1 t icyc ie vol tamnogram of Cr(III)/HCl electrolyte obtained 

subsequent to holding the potential of the working electrode a t  -62hV for a short 

time. The current a t  certain potentials i s  seen t o  decrease s l igh t ly  on ~accessive 

cycles. Note that on each cycle, the dissolution potential o f  lead i s  exceeded. 

Nevertheless, extended cycl i ng experiments (> 200 cycles) showed that a1 though subtle 

changes i n  electrode behavior are possible, the a b i l i t y  of gcid/lead cr: carbon f e l t  

electrodes to  reduce Cr(I1 I )  and oxidize Cr(I1) i s  maintained. 

I n  sumnary , techniques have been developed for depositing very ma1 1 quantities 

2 2 of gold (Y3 pg Au/n ) and lead ( ~ 1 0 0  vg Pb/m ) on porous r:arbon'felt so as t o  

y ield ef f ic ient and stable chromium electrodes. The optimization of these electrodes /. 
requires further investigation of: (a) variations i n  carbodgraphite felts, (b) 1; 
optimization of gold and lead loadings, and (c) " f ine tuning" of catalyzation process. 1 : 
Investigations of mult iple peaks on the oxidation portion o f  cycl ic voltanmetry and 1. 

and the electrochemistry of  chlorfde complexes o f  Cr(1 I I ) a1 so deserve further 
! .  

attention and are expected to  contribute to  optimization o f  the chromium electrodes. 

I n  addition t o  the electrode optimization program, studies a t  Giner, Ini. 
I 

included investigations of: (a) performance characteristics i n  a complete cel 1 , (b) 
v 

effect of electrolyte impurities on chromium electrode, and (c) bismuth as an 

a1 ternate catalyst. 

x i i i  
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V (mV vs. SCE) 
Fiqure S-4: Lead Deposi tion-Oissolution a t  Gold on Carbon F e l t  . 
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NASA Redox systrms are electrochemical storage devices that use two f u l l y  

soluble @ox couples as active electrode materials, separated by a highly selective 
I 

ion exchange membrane. The reactants are contained i n  large storage tanks and ! 
pumped through a stack of redox flow ce l l s  where the electrochemical reactions 

i 

(reduction and oxidation) take place a t  porous carbon f e l t  electrodes. The redox 
I 

I couples currently under investigation are acidif ied chloride solutions o f  chnmium 
I 

(CrI I I /CwII)  and i ron (F~II/F~III)("~I. 

Over the past three years (3-7), Giner, Inc. under NAU contracts has carried 

out investigations of electrodes and electrolyte for the i ron/chromi um redox 

system. The so lub i l i t y  and the s tab i l i t y  of acidic solutions of chromium chloride 

were found adequate. The requirement o f  rapid rates of the electrode reactions 

i s  met sat isfactor i ly on the i ron side by having electrodes of bare carbon f e l t .  

However, a catalyst i s  needed on the chromium side to  increase the rate of chromium 

reaction. The catalyst must also have a high overvoltage fo r  hydrogen evolution, 

since thermodynamically, hydrogen i s  evolved more easily than chromi~na~ (111) i s  

reduced. Appreciable co-evolution of hydrogen not only reduces the current 

efficiency, but over the course of many cycles, would allow the system to  get out 

of  balance and thus lose effective capacity. Giner and Canill ( )  found that 

2 2 trace amounts o f  gold and lead (12-25 ug lu/cm and 100-200 ug Pblm ) would meet 

these requirements. This i s  understandable since lead metal has long been known 

as an effective catalyst for the reduction o f  Cr(II1). The presence of trace anaunts 

: ! of gold seems t o  be necessary t o  produce a surface on which the lead plates (or adsorbs) 
, 

9r. . 6 ... uniformly during the charging cycle. The gold/lead catalyst also greatly improves 

the dischame rate of  the ce l l  cornpard t o  the use o f  lead alone. 

A study was continued t o  further develop and optjmize the chromium electrodes 

and contribute towards carmercial i rat ion o f  the NASA i ron/chromium redox storage 

sys tan. 



I I. OVERVIEII OF PREVINS WORK 

The primary objective o f  the p r i o r  research program ( 3 * 4 )  was to  contribute 

to  the development of the redox f l o ~  ce l l  by investigating the major suspected 

problems o f  the chromium electrode. These relate to: so l ub i l i t y  of reactants, 
i , - the s t a b i l i t y  o f  chromium (11) ions i n  solution, and the e f f i c i en t  electro- 

i catalysis of the chromium (111) - chromium (11) reaction. 

A. Solub i l i ty  o f  Chroli~wrs Chloride and Chromic Chloride i n  Hydrochloric Acid 

Concentrated solutions of chromous and c h m i  c chloride i n  hydruchlori c 

acid are required t o  maintain high power density and t o  hold redox flow system costs 

a t  a reasonably low level. Our laboratory work and work by Lux and :11man ( 8 )  

presented i n  Figure 11-1 confirm that  solutions up t o  3 molar i n  chromous chloride 

could be prepared i n  up t o  2.5 molar H C l  and establish the s u i t a b i l i t y  for redax 

battery operation. We found that  a t  high HCI concentration the so lub i l i t y  o f  

c h m u s  chloride dropped s igni f icant ly.  

There i s  general agreement that  acidic chromic chlorides are soluble enough 

for reC- , battery operation and our results on equ i l i  b r i m  so lub i l i t y  o f  chromic. 

chloride confirm that  solutions up t o  2.5 molar i n  chromic chloride could be 

prepared i n  up t o  6 molar H C l  . 
8. Stab i l i t y  of  Chranous Ion: 

Tne long t e n  stabi 1 i t y  of the aqueous chromus ion was of concern 

becau: . themdynamically i t  i s  unstable a t  low pH; and, a t  low pH, chromous ions 
t 

. . . ould possibly be oxidized by H+ and cause self dischawe. Lonq tenn ( 4 0 0  hrs. ) 
. i 
! s t ab i l i t y  o f  chromous chloride solutions was evaluated and we found that the t h e m -  

dynamically feasible d i rec t  oxidation of chromous ions by hydrogen ions i s  k ine t i ca l l y  I 
I 
i 

inhibited. The s tab i l i t y  of chromous chloride was also evaluated i n  the presence i 

o .  lead and bismuth ( i n  anticipation of the i r  cata ly t ic  attractiveness) and no 

aaverse ef fect  was observed. 
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0 Solution 1C1 
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0 Solution #3 
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Data of Lux P Illmen 
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HCl - NORMALITY 

Figure 11-1. Chromous Chloride Solubi 1 i ty  vs. 
Hydrochloric Acid Concentration 



C. Electrode Material Evaluation 

The fundamental reason for the attractiveness of the Cr(1 I I)/Cr(  I I )  

electrode i s  i t s  negative potential wi th respect t o  the hydrogen electrode. For 

the same reason, d i f f i cu l t i es  were encountered i n  finding corrosion resistant  

materials which exh ib i t  good electrocatalyt ic  a c t i v i t y  for the chromium (111) - 
chromium (11) electrode reaction and a t  the same time show a high twdroqen 

overvol taqe. 

A screening procedure of candidate electrocatalysts was devised based on the 

use of slow l inear  sweep voltanmetry i n  a half-cel l  configuration. The screening 

consisted of sequentially measuring (a) hydrogen evolution characterist ics of the 

material i n  d i lu ted hydrochloric acid, (b) i t s  Cr(1 I I )  reduction characterist ics i n  

acidi f ied CrC13 solution, and (c)  i t s  anodic corrosion i n  d i lu ted hydrochloric acid. 

Electrode materials which showed satisfactory corrosion and Cr( I I I ) reduction 

characterist ics were then tested for Cr(I1) electrooxidation i n  an acidi f ied 

chromous chloride solution. 

I n  a l l ,  the re la t i ve  performance of 26 electrode materials was evaluated. 

No single material tested was en t i re ly  acceptable wi th regard t o  a l l  three requirements 

o f  corrosion rest stance, a c t i v i t y  and high hydrogen overvol tage. Gold, f o r  instance, 

exhibited considerable range of stabi 1 i t y  and favorable electrocatalyt ic  characeristics 

for the Cr(1 I I )/Cr( I  I ) reaction, kt low hydrogen overvol tage. Lead a1 so exhibited 

favorable electrocatalyt ic  properties for the chromium reduction and had high 

hydrogen overvol tage, i t  was l imi ted on discharge by corrosion. The iden t i f i ca t ion  

o f  gold as a good anodic electrocatalyst and lead as a good cathodic electrocatalyst 

led t o  the development of the gold/lead combination electrocatalyst. As shown i n  

Figure 11-2, a combination of gold and lead deposl ted on carbon was found t o  offer 

the advantages o f  each metal without i t s  disadvantages. 

I n  addit ion to  the above, f i v e  dissolved organic compounds (thiourea, palmi t i c  

acid, cety l  alcohol, hexanol , and n-propanol ) were tested as possible hydrogen 

evolution inh i  b i  tors. 
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111. THE EFFECT OF ELECTROLYTE IMPURITIES OM THE CHROHIC CHLORIDE/CHROMOUS 
CHLORIDE REDOX REACT I ON 

Low-cost chromium e lect ro ly tes  are of great in te res t  for  appl icat ion t o  

the Fe/Cr redox battery. Since i t  i s  inev i tab le  tha t  such low-cost e lec t ro ly tes  

w i l l  contain some contaminants, i t  was considered useful as a f i r s t  screening 

step t o  inspect voltamnograms of i n ten t iona l l y  contaminated chromium electro lytes.  

the effects o f  Fe(I1) and A1 (111) were investigated because these are l i k e l y  

contaminants. A1 so, an economically a t t rac t ive ,  comnercial l y  avai lable (McGeon) 

chromium e lec t ro ly te  was studied. For t h i s  purpose a solut ion of 1M chromic 

chlor ide i n  1M HCl  was prepared from a 62% CrC13 ( W e o n )  stock solution. 

A. The Effect o f  Ferrous Ion on the Reduction of Chromic Ion a t  a 
Go1 d/Lead Codeposi ted Electrode 

2 A gold/lead codeposited on graphite rod electrode o f  0.31 an geometric 

area was prepared as f 01 1 ows. A graphite rod (Ul tra-Carbon #450-7-6) was 

wrapped wi th  tef lon tape so as t o  leave exposed onl! &he bottom surface, sanded 

wi th 600 g r i t  s i l i c o n  carbide paper, r insed thoroughly w i th  d i s t i l l e d  water 

and allowed t o  dry. Coplating was conducted i n  a solut ion o f  1.5 x 10% pb2+, 

1 x ~ o - ~ M  A U ~ +  and 1M HCIOg a t  -43OmV (SCE) for  ten minutes a f ter  which the 

electrode was removed, r insed and allowed t o  dry. 

The coplated electrode served as working electrode i n  a conventional three 

electrode v o l t m e t r y  c e l l  containing dearated 1M CrC13 6H20 i n  1M H C l .  A 

potentiodynamic sweep i n  s t i r r e d  solut ion was performed a t  50 mVlmin from -60(mV 

(SCE) t o  -1lO0nV. The potent ia l  o f  the working electrode was never a1 lowed t o  

become more pos i t ive  than -60hV i n  order t o  avoid lead dissolut ion.  Enough 

so l i d  FeC12 t o  br ing the f ina l  Fe(I1) concentration t o  0.5M was added while the 

working electrode potent ia l  was slowly scanning from about - 7 0 W  towards -60OmV. 

A complete scan from -600nV to  -1100nV was recorded when a l l  the FeCIZ had dissolved. 

The resu l ts  o f  the experiment described above are preserted i n  Figure 111-1. 

2 2 Adding Fe(I1 I )  enhanced the observed 1 im i t ing  current from 90 rnA/cm t o  120 mA/cm . 
The onset o f  the current r i s e  subsequent t o  the region of 1 i m i  t i ng  current seems 
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t o  occur a t  a more negative potential  when Fe(I1) i s  added. It i s  encouraging 

that a rapid r i s e  i n  current (as might be expected f o r  hydrogen evolution on Fe) 

i s  not observed. It i s  conciuded that  fur ther experiments are necessary t o  

c l a r i f y  the e f fec t  o f  Fe(I1). These would include measurement o f  the ~e'* + 2e - Fe 

reaction i n  HC1 ~ n d  measurement of the hydrogen evolution reaction a t  the galdllead 

codeposi ted e l  zctrode. 

B. The Effect of Aluminum (111) Ion on the Reductioq o f  Chromic Ion 
a t  a Go1 d/Lead Codeposi ted Electrode - 
Figure 111-2 i l l u s t r a tes  the effect of ~ o - ~ M  AI~+ on Cr(lI1) reduction 

a t  a gold/lead codeposi ted electrode. After testin! i n  solut ion containina A1 ( I 1  I ) ,  

the electrode was removed from solution, rinsed wi th d i s t i l l e d  water and placed 

i n  an n l ( I I 1 )  free solution. This procedure may have resulted i n  some loss of 

lead. The effect cf A1 (111), i f  any, appears to  be small. Electrodeposition o f  

A1 under the conditions of t h i s  experiment would, o f  course, not be expected. 

C. Comparison o f  Fisher and McGeon Chromic C'-loride Solutions 

The electrochemical behavior a t  a gold/lead codeposited electrode i n  a 

1M cr3*, 1M HCI (Fisher) solut ion i s  compared to  a 1M cr3+, 1 M  HCI (McGeon) 

solution i n  Figure 111-3. There i s  no discernable difference i n  behavior i n  

these tests. We therefore recomnend that  the economical 1 y advantageous McGeon 

solution be investigated further; f o r  example: (1) vol tamnetry o f  an 80% chromous 

chloride solution t o  simulate the f ina l  port ion o f  charging where problems reportedly 

occur, (2 )  vol tamnetry a t  more anodic potentials than the region o f  chromic 

reduction t o  f ind evidence of other Faradaic processes, and ( 3 )  electropuri f icat ion 

of the McGeon solution, i f  necessary. 

NASA-L~RC") continued further investigations wi th the chromium solution 

from McGeon. They found that upon repeated cycling with the McGeon solution, 

electrode poisoning occurred and the ce l l  polar! zation tncreased as shown i n  

Figure I 11-4. Chemical analysis showed high organic impurit ies -- par t icu lar ly  

carbonyls which could have resulted from an organic reduction step used i n  the 

preparation of the chromic chloride so lu t i  on. Separation of organics improved 

the performance somewhat, but not enou h t o  jus t i f y  further work. - ! - 
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Figure 111-2. Effect of Aluminum (111) Ion Upon Chromic Ion 
Reduction a t  a Gold/Lead Codeposited Electrode 
(on graphite)  . 
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Solution: 1M CrC13 i n  1N H C 1  

Sweep Rate: 0.05 Voltslmin. 

- FISHER 
0-0 McGEON 

Potential, (Volts vs. SCE) 
Figure 111-3: Combari son of Chromium Electrolytes: The 

Electrochemical Behavior of Go1 d/Lead 
Codeposited Electrode (on graphite) in 
Fisher and McGeon Chrgmic Chloride Solutions. 
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I V .  INVESTIGATION OF THE CWLETE IRON/CHRQMIUN REDOX SUBSCALE CELL 

The overall objective o f  the complete subscal- c e l l  work o r ig ina l l y  pnposed 

was optimization of the concentration and method of application of electrocatalysts 

for the Cr(1II  ) /Cr( I I )  electrode. The imnediate objective of the work reported here 

was t o  gain experience i n  operating 2 cmpietr subscale c e l l  using baseline 

i 

+. catalyzation procedures. The optimization task was superceded by a request fm 
! 

NASA-LeRC t o  perform the task described i n  Section I I 1  o f  the report. 
- ,  

A. Subscale Description 

A schematic o f  the subscale redox f:ow c e l l  used i s  provided i n  Figure 

IV -1 .  The posi t ive electrolyte was 50 m l  of 1M F&lZ i n  211 HCl . The negative 

electrolyte was M m l  of 1M CrC13 i n  2n HCl. For electrocatalysis, the c h r a n i u  

solution was made 1 0 0 ~ ~  i n  PM12 by adding f ive drops (s.17 m l  ) of 211 HCl solution 

2 that was saturated with P M l 2  Active electrode area was 14.5 an . A li2S04 

cleaned carbon f e l t  served as an i ne r t  electrcde on the posi t ive side o f  the ce l l ,  

while a thermally deposited gold on carbon f e l t  (Appendix A) sewed as 

a iner t  electro 'e on the negative side af the ce l l .  An Ionics, Inc. ion exchange 

membrane, CDlL-AS(2SNP), was used as a separator. Each flow-through carbon f e l t  

electrode was gasketed w i t h  a piece o f  0.05" thick polyethylene cut t o  the 

appropriate shape. Two wax-impregnated graphite end-pl ates cmpl  eted the "sandwich 

cell ." . The sandwich ws held together by running a series of insulated bol ts 

completely through the sandwich a t  i t s  edges and tightening with nuts. Each 

graphite end-plate had an i n l e t  and an out le t  port  fo r  the circulat ion o f  

, . electrolyte. Two osc i l la t ing bench pumps ( l a te r  changed t o  dual Bel lom metering 

pumps) were used for circulation. Iner t  p last ic  materials were used for the 

ports and associated tubing. The e lect r ica l  contacts t o  the graphite end-plates 

were made by a t t a c h i q  standard e lect r icd l  lugs to  the plates. 
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8. Polarization Heasurements i n  Complete Cell 

The subscale redox battery was operated using the ~ m e d u r e s  similar t o  

those used a t  N A Y - L ~ R C ( ~ ~ )  except that a saturated calomel electrode (SCE) was plrccf  . 

in to  the chmiun l  i n l e t  of the flow ce l l .  The c e l l  was charged and discharged 

using a constant current supply. During charge, tk c e l l  voltage was l i m i  ted 

t o  1.25 volt ;  during discharge care was taken (when necessary, the discharged 

current was reduced) to  avoid c e l l  eversa l  . For each crlarge/discharge cycle, 

the current and c e l l  voltage were monitored. The to ta l  charge passed and the 

(ideal ) state of charge (assuming no side reactions) was determined from the 

mpere-hour measurements. 

A serles o f  charge/discharge cycles was perfomd; the results are given 

i n  Table I Y - 1 .  On the l a s t  tes t  more complete polarization measurements were 

made. The c e l l  was charged t o  29% state of charge a t  31Zd and discharged to  

5% using stepwise discharge currents of 3 1 W ,  2 W  and l O ( h A .  The results 

are presented i n  fable IV-2. The amount o f  polarizat ion i s  small and could be 

mostly due t o  membrane resistance. The measured value of the potential  of the 

chranim electrode versus the SCE &greed very well with the expected value for 

a reversible C r ( I I I ) /C r ( I I )  electrode. 

The warkabi l i ty of our subscale f u l l  c e l l  test  equipment had been established. 

Any further test ing i n  the complete c e l l  mode, however, was teninated to 

pursue the investigations o f  the electrodes fabricated bv the 8/79 batch of 

Fiber Materials Inc. :FMI) carbon fe l t s  received by NASA. The electrodes 

fabricated wi th t h i s  part icular  batch o f  carbon f e l t  showed reduced chromium 

ac t i v i t y  and high hydrogen evolution (see Section 111). 



TABLE 1\11 

FULL CELL TESTING 

Cherqef Di scharge State of Charge 
Cell App ! i ea 

Cu-rent Polarization 

FIRST TEST 

System charged Charge 

up to 92% ) Discharge 

SECOND TEST 

System charged Charge 36% 

up to 94% Discha, 94% 

THIRD TEST 

F i r s t  Cycle 

( i y s t m  charged) 
to  670, 

Second ~ y c l  e 

Third Cycle 

Charge 

Di scharge 

Charge 

Di scharge 

Cheqa 

Discharge 

Discharge 

142mV 289mA 

High 14mA 



TABLE IV-2 

Qsk 
Charge 

f harge 

Charge 

Discharge 

Discharge 

Di scharge 

D l  scharge 

01 schargc 

D i  sckarge 

CELL POLARIZATION 

State of Polarization 
Charge (%I (mW 

Current 
0 

Equivalent 
Polarization 

a t  312ma 
(mW ) 

193 

150 

141; 



V. INVESTIGATIOtI OF ELECTROE PREPARATION PROCEDURES 

The gold-lead e l  ectrocatalyst combination was applied by NASA-LeRC t o  porous 

electrodes made of carbon fe l ts .  Among several carbon substrates evaluated a t  

FMSA-LeRC for electrode substrates ,a graphi te/carbon fe l  t structure y ie lded the 

necessary sheet f l o w  characterist ics w i t h  a small pressure drop. Uniform gold 

deposi t i o n  was achieved by a simple impregnation technique usi ng aqueous gold 

chloride solut ion followed by thermal decomposition a t  2 5 0 ~ ~ .  Lead was deposited, 

subsequently, by f n  s i t u  electroplat ing via addit ion of lead chloride solut ion t o  

chromium chlor ide electrolyte.  Both graphite and carbon f e l t s  showed good and 

equal performance; and the carbon f e l t  was selected due to  i t s  lesser cost. This 

process i s  detai led i n  Appendix A and was used as a "standard" o r  base1 ine 

process. I n i t i a l l y ,  t h i s  process gave a very good success rate; electrodes prepared 

by t h i s  technique showed high a c t i v i t y  f o r  the chromium reax reaction and hign 

polar izat ion f o r  hydrogen evolution. 

I n  scaling up the system, NASA-LeRC purchased a new l o t  of carbon f e l t  f rom 

the same vendor (Fiber I'laterials, Inc. ). NASA found tha t  electrodes prepared 

wi th  t h i s  new l o t  had much higher rates as wel l  as poorer voltages on discharge (10) 

o f  hydrogen evolut ion than those made w i th  the o r iq ina l  lo t .  This f e l t  

i s  iden t i f i ed  as "poor" o r  8/79 f e l t .  The manufacturer could not suggest any 

obvious reasons f o r  the differences. An extensive program was carr ied out a t  G i  ner, 

Inc. to  characterize the f e l t s  and to f i n d  a "normalization" procedure which would 

produce sat isfactory electrodes from any l o t  o f  f e l t .  The procedures and the resul ts 

o f  t h i s  prcgram are described below. 

A. Physical Characteri rat ion:  

The physical properties measured were average weight per u n i t  area ( three 

determinations), hydrophobicity and the pH o f  f e l t  soaking water, using samples of 

14.5 cmi projected area from three l o t s  of carbon f e l t  (NASA old, 3;79 and 10/7?) 

and three l o t s  o f  graphite f e l t  (12/79A, 12/7?B and 12/79C). 



F i f t y  m l  o f  d i s t i l l e d  water was placed i n  a beaker and i t s  pH measured w i th  a 

combi nation pH electrode s tandardi zed agai ns t comnerci a1 pH buffers. A weighed 

dry f e l t  sample was imnersed i n  the beaker containing the 50 m l  d i s t i l l e d  water 

a t  rooin temperature and s t i r r e d  f o r  one minute. The f e l t  was then a ras~ed a t  

one corner wi th tongs, l i f t e d  out of the water and drained against the side of 
! 

the beaker for  t h i r t y  seconds. The wet f e l t  was weighed. The dif ference i n  

weight between the. wet and dry f e l t s  i s  termed the i n i t i a l  water retention- The 

water capaci t y  was determined as f o l l  aws . The weighed wet fe l  t mentioned above 

was returned t o  the same water containing beaker. The beaker was placed i n  a 

vacuum dessicator and a vacuum was pul led f o r  t h i r t y  minutes with a water aspi rator .  

The f e l t  Has removed, drained against the side of the beaker for t h i r t y  seconds 

and weighed. The pH o f  the f e l t  soaking water rem6, n i  ng i n  the beaker a f t e r  vacuun 

impregnation was measured. 

Table V-1 gives the resul ts o f  physlcal property measurements for  the 

s i x  types o f  f e l t  investigated. The average weight per u n i t  area was s ign i f icant ly  

greater f o r  the carbon 8/79 (NASA new) f e l t  than f o r  the U S A  old f e l t .  Another 

l o t  of f e l t  obtained a t  a l a t e r  date, 10/79 f e l t ,  showed an intermediate value. 

I n  t h e case of graphite fe l ts ,  12/79/A and 12/79/8 have average weight per u n i t  

areas,simila;- to  iSASA o ld  f e l t .  Graphite f e l t  12/79/C has a high average weight 

per u n i t  area s imi lar  t o  8/79 fe l t .  The NASA o ld  f e l t  i s  c lear ly  the most "wet- 

table" carbon f e l t .  The least  "wettable" f e l t  o f  a l l  i s  8/79 which i s  the batch 

that  gave the poorer success ra te  using the standard act ivat ion technique of 

i4ASA-LeRC. Interestingly, the 8/79 batch also has the l ames t  soak water pH 

change, i n d i c t i n g  i t s  surface chemistry i s  d i f f e ren t  from the other f e l t s  o r  

contains a1 ka l  ine impurit ies. The lot-to-:ot variabi 1 i t y  i n  physical properties 

o f  graphite f e l  t i s  less than that  of carbon fe l t .  One graphite f e l t ,  12/79/8, 

has v i r t u a l l y  ident ica l  properties t o  the NASA o l d  f e l t  which had given a high 

success ra te  using standard act ivat ion procedures. A comparison o f  the vol t- 



TABLE V - 1  

SOME PHYSICAL PROPERTIES OF NASA CARBON GRAPHITE FELTS "AS RECEIVED" 

Fel t Sample Neigh5 Water Retenti on Water Capacity PH 
(mqlca ) jmg H201mg f e l t )  (mg H201mg f e l t 1  - 

Old carbon f e l t  19.6 

8j79 carbon f e l t  27.4 

10179 carbon f e l t  23.8 

12179-A graphite 
f e l t  22.0 

12179-0 graphite 
f e l t  21.4 

12179-C graphite 
f e l t  28.1 



amnetric behavior o f  these two f e l t s  was carr ied out and described below. 

B. Activat ion by "Standard" Procedure: 

Samples of 14.5 m2 were cut from each of the four fe l  b designated as 

(A) o ld  carbon fe l t ,  (B) 8/79 carbon f e l t ,  (C) 10179 carbon f e l t ,  and (D) 12/79 

graphi t e  f e l t .  These samples were put through the standard impregnation/thermal 

decomposi ti on procedure. 

We made some very interest ing observations about the gold impregnation step. 

As explained i n  Appendix A, the thermal gold deposition process involves 
3+ 

soaking the f e l t  i n  a 1.25 x 10% Au solution. A dramatic difference was observed 

i n  the gold soaking solutions a f t e r  the f e l t s  had soaked overnight. The NASA old, 

10/79, and graphite f e l t s  behaved similarly i n  that  there was l i t t l e  

color change o f  the gold chloride solut ion ( the soaking solut ion maintained i t s  

characterist ic pale ye1 low color)  whereas the 8/79 f e l t  soaking solut ion became 

colorless. Hhen the f e l t  samples were placed on b l o t t i ng  paper, the NASA old, 

10179, and graphite f e l t s  discolored the paper wi th the gold solut ion which drained 

from the fe l t s .  The 8/79 f e l t ,  however, d i d  not produce any colorat ion on the 

adsorbent paper. It was evident that  the 8/79 f e l t  had picked up a l l  gold which 

2 amounted t o  about 60 pg Au/m . This was confirmed by chemical analysis by neutron 

act ivat ion a t  NASA-LekC. By comparison, the good f e l t  had picked up only 20 ug Au/ 

2 an . These results, taken wi th the pH tes t  described above, provide a str6ng 

evidence that  d i f fe ren t  l o t s  o f  the carbon f e l t  vary widely i n  t he i r  surface 

chemi s t r y .  

C . Electrochemical Screening o f  Fel ts Act i  vated by Standard Procedures 

1. Constant Potential Technique: 

A constant potential  technique was used t o  cm.pare different fe l t s  and 

t o  evaluate the e f fec t  o f  various ster i n  the NASA-LeRC standard method for making 

2 chromium redox electrodes. Four samples o f  14.5 cm were cut from each of the 

three carbon f e l t  l o t s  designated as (A) o l d  fe l t ,  (B) 8/79 f e l t ,  and (c )  10/79 f e l t .  



"NASA old" was a l o t  that had been y ie ld ing "good" electrodes, while the 

8/79 f e l t  had not. These samples were put through the standard NASA-LeRC act ivat ion 

procedure. After each step, one 14.5 cm2 sample was taken f r o m  each o f  the f e l t  

lo ts .  Three 8 mn diameter (0.5 cm2 projected area) disks were punched out o f  each 

2 14.5 an sample. Each disk was placed i n  a tantalum w i  r e  coi 1 current col lector 

and tested i n  a ha l f -ce l l  . A universal electrochemical c e l l  assembly (e.g. ECO 

Model 494) as shown i n  Figure V - 1  was used for a l l  these experiments. The ce l l  

container i s  a 75 m l  glass j a r  threaded t o  accept a Moplen screw head with 5 

holes designed t o  accept ground glass taper jo ints.  The counter electrode i s  a 

spectrographi c a l l  y pure graphite rod (Ul tra-Carbon "F" ) and the reference electrode 

i s  a saturated calomel electrode (SCE). A gas bubbler i s  equipped with two way 

stopcock so that  nitrogen can be ei ther bubbled through electrolyte o r  swept over 

the surface of the electrolyte. I n  a l l  cases, 50 m l  of solut ion was used; a l l  tests 

were performed a t  room temperature. 

A1 1 solutions were deaerated wi th prepuri f ied n i  trogen. Fresh solut ion was 

used. f o r  each three disk series. The working electrode was placed i n  the c e l l  

while potentiostated a t  -0.5V (SCE) except that  lead plated electrodes were potent- 

iostated a t  -0.7V t o  prevent deplating. After one minute the potential was stepped 

with a preset bias box t o  -1.OV and the currents a f te r  50 seconds and 100 seconds 

were measured. After two minutes a t  -l.OV, the potential was stepped back t o  i t s  

or ig inal  value for one minute and the whole process repeated. For each sample 

tested, the f i r s t  50 second measurement was ident ical  t o  the second 50 second 

- .  measurement. The two 100 second measurements 1 i kewi se were reproducible. 
, :. I 

Table V-2 presents the resul ts o f  vol tamnetric experiments designed t o  compare 

d i f ferent  f e l t s  and evaluate the several steps i n  the standard method f o r  making 

chromi urn redox electrodes. As expected, i n a1 1 cases hydrogen evol u t ion currents 

were re la t i ve ly  small on bare carbon f e l t s  and s ign i f icant ly  increased a f t e r  gold 

deposition. After the thermal gold deposition step, 10/79 fe l ts  on the average 
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Cb. net. 
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Ft9utaV-1. Cell Conflguration with l a  - M i r e  Holder 



TABLE V-2 

H, EVOLUTION CURRENT* IN n~ AT -1 .oo VOLT IN IN HCI OF 
THREE CARBON FELTS AFTER DIFFERENT STAGES I N  THE ACTIVATION PROCEDURE 

Fel t As Received NASA Old 10/79 Fe l t  8/79 Fe l t  

50 sec 

100 sec 

After Cleaning i n  
Sul fur ic  Acid 

50 sec 

100 sec 

Af ter  Thermal Gold 

50 sec 

100 sec 

After Electroplated Lead 

50 sec 4.53 

100 sec 4.65 

* 
The currents are averages o f  3 samples from each f e l t  
and duplicate '. ~ s t s  for each sample. 



gave more hydrogen evolution than NASA o ld  f e l t ;  8/79 f e l t  c lear ly  gave the largest 

hydrogen evolution current. The magnitude o f  hydrogen evolution f o r  each f e l t  de- 

creased af ter  the lead electroplat ing step, but once again the 10179 f e l t  showed 

somewhat greater current than NASA o ld  felt,and the 8/79 f e l t  gave the most current. 

These results are i n  complete agreement wi th the observations by NASA-Lewis on the 

performance o f  electrodes i n complete c e l l  s . 
1 

2. Linear Sweep \ r ~ l  tamnetry: 

A slow scan rate, 1 inear sweep voltanmetry i n  s t i r r ed  solut ion was also 

used t o  evaluate electrochemical properties o f  the three carbon f e l t s  and one arsphite 

f e l  t. The approach taken was t o  compare i n i  ti a1 current-vol tage p ro f i  les  i n four 

d i f fe ren t  elect-olytes. 

These are: 

A) 1N HC1 

- 0)  1N HC1 + 0.5M C r C l  
J 

C) 1N HCI + 0.41 CrC13 + loe4 H PbCl2 

A l l  experiments described here were carr ied out i n  the above described ha1 f c e l l  

assembly. An electrod? sample was placed i n  a tantalum wire c o i l  sample ho:der 

and imnersed i n  solution. The electrode was held a t  -0.250V vs. SCE f o r  about 1 

minute snd vol tamnetry was performed beginning a t  -0.250V and sweeping more nepati ve 

to  -1.2 V a t  a sweep ra te  of 0.25 V/minute. Most scans presented here are 

a f te r  3-4 sweeps when the curves became reasonably reproducible. No attempt was 

made t o  correct f o r  I R  drop between the reference and working electrodes since the 

purpose was only t o  compare d i f ferent  f e l  t s  and catalyzation techniques. 

Af ter  making sweeps i n  1N HC1 (solut ion A) t o  measure hydrogen evolution 

currents, the c e l l  solut ion was swi tcned t o  O.5M C r C l  i n  1N HCl (solut ion R) . 
After  performing sweeps i n  the chromic chloride solutions, 5 drops (2, 0.17 ml) of 



aqueous solution of saturated PbC12 weye added to the cell solution t o  make 

solution C (0.5M CrClq + l N  HCl + IO-'M PbC12). Sweeps in solutions 0 and C nrovide a 

measure of chromic reduction reaction without lead ions and wi th  lead i d s ,  respect- -- 
ively. The electrode was rinsed with distilled water a.:d a solution of fresh 113 HC1 

with lo-% PCCIZ (Solution D) was substituted and the sweep repeated. 

Baseline Electrode: The f i r s t  series of such sweeps was carri ed out on NASA old 

fel t .  Figure V-2 shows current potential curves for WSA old carbon f e l t  in 'as i 
I 

received" condition. The bare f e l t  (without any gold) shows very 1 i t t l e  hydrogen ! 
I 

e.:olution in 1N HCl. When lead 1s added, as cxpected fr~m our previous work ( 4 3 )  

lead on carbon fe l t  further reduces the hydrogen evolution i n  HCI and shows very 

good Cr(II1) reduction acti vi ty  . 
The polarization curves obtained on the NASA old carbon fel t electrode contain- 

2 ing 25 vg Au/cm (by the standard activation procedure) with and without incol-poration 

of lead are presented in Figure 'J-3. These curves show that the incorporation of 

lead onto the electrode surface suppresses hydrogen evolution and sreatly incr~aqes 

the cataiytic activity for Cr(II1) reduction reacti, , ;)nears that h y d r . 0 ~ ~ ~ 1  

evolution on gold surface n o t  only contributes to the efficiency loss by parasitic 

power consumption during charging b u t  also retards Cr(1 I!) reduction reaction by 

competing for catalytically active ,ites. 

Comparison of Carbon Felts: A com4arison of three batches of carbon fel ts  catalyzed 

by t h s  standard impregnation/t;lermal decomposition techniqce i s  shown in Figure V-4. 

Clearly, there ire large differences in hydrogen evolution currents. The chromi um 

reduction currents remain about the same, assuming that the chromium w.duction and 

hydrogen evolution processes occurring in 1 N  HCI + 0.5M CrCl ( w i  t h  or wi thout PbC1 2) 

are independent and addi ti ve . 
Once again , the 10179 *el t demonstrated electrochemical properties i ntermedf ate 

to those of the NASA old fe l t  and the 8/79 fel t .  This pattern indicates some kind o f  



Figure V-2. Hydroqen Evolution and Chromic Ion Reduction 
on a Bare Carbon Felt ,  Uith and Without Lead 
Chloride (NASA "Old" Fel t  With No. Gold). 
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Figure Y-3. Hydrogen Evolution and Chromic Ion Reduction 
on a Carbon F e l t  Electrode, After tandard 2 Activation, Containing 25 ~g Au/m With and 
Without Lead Chloride (NASA "Old" Carbon F e l t ) .  
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Potential ,  P o l  t s  vs . SCE) 
Figure V-4. Comparison o f  Three Carbon Fel ts  After Standard 

Actlvation. Hydrogen Evolution and Chromic Ion 
Reduction on Carbon Fe l t  Electrodes Containing 
25 pg ~ u / a n 2 ,  With Lead Chloride. 



correspondence between measured differences i n  the physical and surface propert ies 4 
r' 

and the d i  fferences i n  electrochemical performance. It appears reasonzl?l e, there- 

fore, t o  use these physical character ist ics t o  evaluate fe l ts .  

Preliminary Invest igat ion of Graphite Fe l t :  I n  view of the var iat ions i n  production 
I I 

l o t s  of the carbon fe l t ,  i t  i s  desirable t o  invest igate the s u i t a b i l i t y  and uni formity 

o f  graphite f e l t  material f o r  applicazion i n  the iron/chromium redox battery. Accord- 

ing t o  the information supplied by the nanufacturer (Fiber Materials Inc.) , the carbon 

f e l t  i n  current use has a carbon content o f  % 97%, while the graphite f e l t  has a 

carbon content o f  99.9%. It would seem l i k e l y  tha t  the graphite f e l t  might have 

greater uniformity and might not require any nermal i z i n g  procedure which would o f f -  

set the cost d i f fe ren t ia l .  A sample o i  $" graphite f e l t  was soaked i n  1.25 x 10% 

go1 d solution, dr ied and annealed, and characte f  -ed i n  ha1 f-cel 1 experiments i n  the 

manner previously described. A comparison o f  as ?i ved (wi thout any cleaning 

treatment) graphite f e l t  tha t  i s  gold/lead ca ta ly t  J, and the NASA o l d  f e l t  electrode 

i s  presented i n  Figure V-5. Although these resu l ts  are derived f rom an 4" th ick 

graphite f e l t ,  i t  i s  encouraging to  note that  graphite f e l t  electrodes, without any 

cleaning o r  normalizing step, behaved very rnuch l i k e  the NASA o ld  f e l t  electrode - 
wi th good C r ( I I I ) / C r ( I I )  ac t iv i ty .and very hiqh hydroqen polar izat ion.  

D. Improved Catalyzation Processes : 

During the characterizat ion o f  d i f f e ren t  f e l t  materials, a most s ign i f icant  

difference was the extent o f  gold pick up by di f ferent  f e l t s  from an aqueous solut ion 

2 of gold chloride; the "good" f e l t  had picked up only 20 ug Au/cm whereas the "poor" 

2 f e l t  exhausted the gold solut ion and picked up 60 ug Au/m . Considering tha t  the 

l a t t e r  f e l t  was the least  wettable t h i s  gold could not be well  d ist r ibuted.  Second- 

ly ,  i t  appeared that  a l l  the gold chlor ide had reacted t o  leave the solut ion color-  

less. We believe that  the increased gold take up was due to  "excessive" reducing 

groups on the surface of the "poor" (8/79) carbon fe l t s .  Therefore, oxid iz ing 
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Figure V-5. Comparison of Graphite and Carbon Fel ts .  Hydrolen 
Evolution and Chrmic Ion Reduction on the "Old" 
Carbon Fe l t  (1/8") Electrode and an k" Graphite 
Fe l t  Electrode, (Both Containing 25 ug ~u/cm2 With 
Lead Chloride. Currents for the Graphite Fe l t  are 
Compensated for i t s  Double Thickness.) 
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treatmnts such as H 3 potassium permanganate, chronic acid and n i t r i c  acid were 
2 2' 

t r i ed  a t  Giner, Inc. Siml tsneously gas phase treatments, such as a i r  oxidation 

a t  800'~ and H2 reduction a t  1 6 0 0 ~ ~ .  were attempted a t  !USA-LeRC. After i n i t i a l  

screening, a n i  tri c acid treatment was further pursued. 

1. Nonal izat ion by t l i t r i c  Acid 

A l l  three carbon fe l ts  (old, 8/79 and 10179) were soaked i n  1M HHO 
3 

a t  60°C for 30 minutes, rinsed thoroughly i n  d i s t i l l e d  water, damp dried. and 

soaked i n  1.25 x 10'~Pl A U + ~  solution. After the f e l t s  had soaked overnight i n  gold 

chloride solution, there was only a very s l i gh t  difference i n  the appearance of 

soaking solutions; the solut ion with the 8/79 f e l t  appeared s l i gh t l y  paler than 

the other two. 

A second set o f  carbon f e l t  samples was s imi lar ly  treated with 1M 
+3 

n i t r i c  acid but, th i s  time, soaked i n  a solution containing 7.36 x 10-'!I Al; , 

mre d i l u te  than that  used i n  the standard procedure. Af ter  overnight soak, the 

gold containing f e l t s  were dried and heated a t  260'~ f o r  2 hrs. Figure V-6 presents 

polar i  rat ion curves i n  a ha l f  ce l l  containing 0 . 9  C r C l  i n  HCI with and w i  ? \out 

PbC12 solution added. A comparison with Figure V-4 shows that  a n i t r i c  acid pre- 

cleaning combined with the use o f  a more d i lu te  gold chloride solution has signif icant- 

l y  decreased the hydrogen evolution o f  8/79 and 10/79 f e l t s  and the performance 

characteristics of the three carbon f e l t s  are much closer to  each other. 

A n i t r i c  acid soak as a precleaning step was used to oxidize the reducing groups. 

Such a treatment i n  conjunction with the use 06 m r e  d i l u t e  gold solution has shown a 

s igni f icant  normalizing e f fec t  such that the electrodes from any l o t  of  f e l t  are 

now similar. Tests a t  NASA-L~RC"~) on electrodes prepared by n i t r i c  acid cleaning 

2 of the "poor" (8/79) f e l t  followed by thermal decomposition o f  13 ag Au/cm onto 

the surface proved satisfactory i n  lab ce l ls  but not i n  larger ce l ls .  Clearly, the 

results obtained with th is  normalizing process are s ign i f icant  but insuf f ic ient  
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C )  1N HCl + 0 . 9  CrZlj  + 10% PbCIZ 
0) 1N HCl + look PbCl2 
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Figure V-6: A C a n ~ r i s o n  of Three Carbon Felts After HN03 
Normalization Treatment. Hydrogen Evolution 
and Chromfc Ion Reduction or Carbon Felts 
Containing 13 pg ~ u l a n 2 ,  With Lead Chloride. 



2, A1 coho1 Assisted Go1 d Impregnation: 

A n i t r i c  ac id soak as a possible qormalization treatment fo r  carbon 

f e l  t showed s ign i f i can t  but inadequate improvements. Apparently, the variance i n  

the condi t ions of the fe l  t s  from di f ferent  l o t s  exceeded the normalization e f f e c t  

of t h i s  treatment. I n  our opinion, i t  was necessary t o  achieve (a) complete 

wett ing of the f e l t s  and (b) uniform d i s t r i b u t i o n  of h ighly  dispersed gold. 

Alcohol i s  an excel lent  wetting aoent for carbon and graphite materials. I n  

an ef for t  t o  uniformly d i s t r i b u t e  gold on a carbon f e l t  electrode. a soaking so lu t ion  

containing isopropanol was made up w i th  1.25 x ~ o - ~ M  HAuC14*3H20 i n  a 50% water - 
50% isopropanol (by volume) mixture. A sample of the o l d  f e l t  was soaked i n  t h i s  

solution. The r e s t  o f  the steps (drying and heating a t  260'~ for  2 hrs) of the 

standard procedure were used and the resu l t i ng  electrode was tested by the 1 i near 

sweep vol tamnetry technique. As expected. the resu l ts  as presented i n  Figure V-7  

indicated increased gold take-up. 

As a resu l t  o f  the above work, fu r ther  experiments were done a t  NASA-LeRC 

wi th  d i l u t e  gold chlor ide concentrations i n  an alcohol/water mixture i n  conjunction 

wi th the use of KOH as a precieaning step. This work resulted i n  a process tha t  

gave the best electrochemical character is t ics observed t o  date -- very 1 i t t l e  

hydrogen evolut ion and very high rates f o r  chromium redox reaction. This process 

w i l l  be ca l led  alcohol assisted and i s  described i n  Appendix B. A comparison o f  

hydrogen evolut ion character is t ics o f  the electrodes prepared by d i f f e r e n t  

tzchniques developed i n  t h i s  program i s  given i n  Figure V-8 (10). 

The improved catalyzat ion technique which involves an alcohol assisted gold 

I impregnation and a precleaning step using KOH ( 11) produced electrodes whl ch do not 

evolve measureable amounts of hydrogen u n t i l  the c e l l  i s  95% f u l l y  charged. I n  

addit ion, these electrodes snow excel l e n t  performance on discharge. An important 

aspect of t h i s  method of preparation i s  tha t  i t  produces we1 1 behaved electrodes 

from most l o t s  o f  f e l t  t r i e d  so far, so tha t  character izat ion of the f e l t  i s  no 

longer a major problem. These procedures seem e n t i r e l y  sat is factory fo r  small c e l l s  
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Figure V-7: E f fec t  o f  Alcohol Assisted Gold Impregnation. 

Hydrogen Evolution and Chromic Ion Reduction 
on "Old" Carbon F e l t  Containing Gold, With 
and Without Lead Chloride. 
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and large single cel ls (12). Further refinements w i l l  be needed, however, to 

achieve second order improvements such as t o  minimize the blue hysteresis effects.  



V I  . INVESTIGATION OF THE CHROMIC CHLORIDE/CHROMOUS CHLORIDE REDOX 
REACTION BY CYCLIC VOLTANlETRY 

NASA-LeRC has gained considerable prac t ica l  experience w i th  the performance 

of leadlgold electrodes i n  complete s ingle c e l l s  as wel l  as i n  stacks of ce l l s .  

Congruently, many questions have ar isen regarding performance var iabi  1 i ty. This 

has been a t t r i bu ted  t o  non-uniformity i n  the f e l t s  and i n  the gold deposit ion 

process. During the course of t h i s  pro! ram, a systematic study of lead/gold 
I .  

e lectrocatalysts was i n i t i a t e d  w i th  the goal of advanced development o f  the chromium 1 ,: 
! 

redox electrode. The object ives of t h i s  study are: 

(a)  The development of re1 iable, quant i ta t i ve  screening methods f o r  

qua1 i t y  assurance arid contro l  o f  f low c e l l  electrodes. 

(b) Determination of carbon fe l  t character is t ics re1 evant t o  performance. 

( c )  Determination of methods o f  appl i c a t .  on o f  gold and lead t o  achieve 

uniform and reproduci b le  performance. 

(d) Establ i s h e n t  o f  a basel ine  for gold11 ead performance t o  faci  l i t a t e  

opt imizat ion and f o r  comparison w! t h  a1 te rna t ive  e lect rocata lyst  systems. 

(e) Optimization of the gold/lead r a t i o  and loading f o r  maximum performance. 

( f )  Invest igat ion of possi b l z  r e a c t i v i t y  differences between chromium 

complexes which may re la te  t o  hysteresis effects. 

This work was s ta r '  -3 under the present contract and i s  t o  be continued under 

a fo l low otl contract (NASA Contract DEN3-198). 

Cycl ic vol tamnetrj i s  being developed as a screening method because i t  afford? 

the opportunity t o  study Cr ( I I1 )  reduction and Cr( I1)  oxidat ion i n  a s ingle exoeriment 

using Cr ( I I1 )  e lec t ro ly te .  A l l  the information needed, including k ine t i c  . i 
parameters, can be derived, i n  principle, from cycl i c  vol tamnetric data. However, 

ext ract ing the information from the data i s  a challenging problem. 

The experimental procedure i s  essent ia l ly  s im i l a r  t o  the one used fo r  1 inear 

sweep vol tammetry except t ha t  a t r iangular  sweep i s  used. Improvements i n  

technique w i l l  be incorpo:ated i n  the fol low on contract. F i r s t ,  NASA-LeRC has 



suggested(lO) a method for  mounting f e l t  electrodes, w i th  a spring c l i p  masked 

w i th  wax, whi:h does not involve compression o f  the f e l t .  Second, e lect ronic  i R  

compensation w i l l  be used i n  the future experiments. 

A. Hydrogen Fvolut ion and Lead Deposition on Carbon 

As was the case i n  the l i nea r  sweep vol tamnetry, c y c l i c  v o l t m e t r y  showed 
! 

very l i t t l e  hydrogen evolut ion on bare carbon f e l t  i n  1N HC1. The solut ion was 

made t o  ~ F - ~ M  i n  PbC12 by adding a measured amount of saturated lead chlor ide 

solut ion i n t o  the c e l l .  The working electrode was held a t  0 mV (SCE) where no 

bulk lead deposit ion should occur. A mul t i -cyc le voltamnogram was then obtained, 

f i r s t ,  between 0 V and -1.0 V a t  a scan r a t e  o f  10 mV. Very wel l  defined lead 

deposit ion and lead deplat ing peaks were obtained. As shown i n  Figure V I - 1 ,  the 

anodic branch of the curve was investigated up t o  +600 mV (SCE), but nq evidence 

f o r  underpotential deposited lead on carbon was obtained. 

B. Hydrogen Evolution and Lead Deposition on Gold on Carbon 

Figure VI-2 i l l u s t r a t e s  the hydrogen evolut ion react ion i n  1.2 M HC1 a t  

2 a gold on carbon f e l t  electrode (13 pg Au/m ) orepared by the alcohol assisted 

method. Although gas bubbles seemed t o  c l i n g  tenaciously t o  the f e l t ,  no trace of 

Hz oxidation was found i n  the potent ia l  range of t h i s  experiment. 

I t  can be seen tha t  the hydrogen evolut ion current s ta r t s  t o  become s igni f icant  

a t  about -600 mV versus SCE which i s  about the potent ia l  a t  which the chromiu~n 

electrode operates. It was attempted t o  suppress t h i s  hydrogen evolut ion by 

adding PbCIZ t o  the e lec t ro ly te  '1 trace amount. The solut ion was made 4.8 x ~ o - ~ M  

i n  Pb(I1) which corresponds to  100 pg pb/cm2 f e l t .  The workinq electrode was 

, 
I potentiostated for ten minutes a t  -618 mV (SCE) (whi le bubblinq N2 through the 
I 

so lut ion)  so tnat  the deposit ion of lead could proceed. The mu1 ti -cycle vol tamnogram 

( s t i l l  so lut ion)  sliown i n  Figure VI-3 was than obtained. The hydrogen evolut ion 

i s  reduced by an order o f  magnitude compared t o  Figure VI-2. It i s  important t o  

note tha t  a9 ;uccessive cycles were performed, the amount o f  lead deposited 

eecreased, but the hydrogen evolution react ion was unchanged. Apparent1 y during 



V(nV versus SCE) 
Fiqure VI-1: Steady-State Vol tamnogram of Lead Deposi tion-Di ssol ution 

Reaction c t  Carbon Fe! t 
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Figure V I - 2 :  en Evolution a t  Gold on 118" Carbon Hyd"e Felt lectrode : 



V (mV vs. SCE) 
Figure V I  -3: Lead Oeposi tfon-Dissolution at Gold on Carbon Felt . 
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cycling, the Pb(I1) ions slowly diffused away from the f e l t  because the bulk 

concentration of pb2+ i s  so low. The amount of lead corresponding to the smallest 

2 2 str ipping peak i n  Figure VI-3 i s  about 3 ug/m or  1.5 ug for the 0.5 cm (8 mn 

diameter) electrode used. It can be concluded that only trace, even submonolayer 

mount of lead i s  sufficient t o  eliminate hydrogen evolution on gold. Once again, 

we found no evidence of under-potential deposition of lead on gold i n  t h i s  experiment. 

The absence of any UP0 (or  adatcms o f )  lead i s  contrary t o  the works o f  

Adzic, e t  a1 (13) and McIntyre, e t  a1 ( I4 )  who found very strong evidence of UP0 

lead on gold i n  perchloric acid and KOH, respectively; both these electrolytes are 

noncomplexing with respect t o  lead. I n  contrast, our experiments are i n  HC1. 

Lead complexes wi th chloride ions and perhaps does not undergo bPD. 

C. Chromic Ion Reduction on Carbon, Lead and Gold/Lead 

1. Carbon 

A p la in  f e l t  electrode was cycled i n  0.W ~ r + ~  solution. As shov 

i n  Figure VI-4, very small amounts o f  Cr( I I1)  were reduced. Essentially no Cr(1I) was 

oxidized i n  the pract ical range o f  battery operation. A t  very high polarizations, 

however, C r !  11' does oxidize on carbon but i n  a comalex manner which i s  not understood. 

The mu1 t i p l e  peaks are probably due t o  the inhomogeneous surface of carbon fe l t .  

2. Lead on Carbon 

Following the scan of Figure VI-4, a measured amount of PbC1, was 
L 

added t o  the electrolyte. The resul t ing solution was (0.W C r C l )  + ~ o - ~ M  PbC12) 

i n  1.2M HC1. A study state cyc l ic  voltannogram i s  shown i n  Figure V I - 5 .  A t  

-600 mV, coincident wi th lead deposition,we saw large amounts o f  C r  (111) reduction. 

This very c lear ly established that  bulk lead i s  an act ive catalyst for chranium 

reduction. Essential l y  reversible oxidation o f  chromium occurred on 1 ead surface 

but coincident with lead d i  ssolution there was a precipitous drop i n  the chromium 

oxidation reaction. Carbon i s  t o ta l l y  inactive f o r  Cr( I1)  oxidation a t  t h i s  potentlal .  

A t  higher overvoltages once again chranium oxidation proceeded i n  a complex manner. 

The essential features o f  chromium oxidation peaks i n  t h i s  higher potential range 
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remained the same as that  on p la in  carbon fe l t .  

3. Gold-Lead on Carbon 

Figure VI-6 represents our f i r s t  attempt t o  study the PbIAu on carbon 

electrode i n  C r ( I I I ) ,  HCl  electrolyte. The cycling of Figure VI-3 was continued 

u n t i l  almost no noticeable amount of lead was being stripped off the electrode. A t  

t h i s  point, the hydroaen evolution was only s l i gh t l y  increased over tha; pictured i n  

Figure VI-3. While the working electrode was a t  open c i r c ~ i t ,  enough CrC13 6H20 

was added t o  the solution t o  give (0.2M CrC13 + 4.8 x 10.'~ PbC12) i n  1.2N HC1. 

A multi-cycle voltamnogram between 0 V and -1.0 V (SCE) was then obtained. Figure 

VI-6 i s  the fourth cycle. The observed cathodic currents must be essential ly due 

t o  hydrogen evolution and Cr( I1 I )  reduction since the lead deposition currents are 

very small. It rould be very helpful t o  know the fract ion of current due t o  each 

of these reactions as a function of potential, but the data are presently insufficient. 

One would not predict from a comparison o f  Figure VI-3 and Figure VI-6 that  the 

sharp r i s e  i n  current following the cathodic peak i s  purely hydrogen evolution. 

The residual cathodic current observed for lead deposition reaction suggests that 

the sharp r i s e  might be hydrogen evolution superimposed on a Cr( 111) reduction 

1 i m i  t ing  current. Another poss ib i l i t y  could be Cr( I I1)  catalyzed hydrogen evolution. 

This could be caused by adsor~t ion of Cr( I I1)  on  old so that  the coveraae of qold 

by lead i s  lessened. These matters warrant further investigation. 

Another 4uzzling feature of Figure VI-6 i s  the double anodic peak. The 

oxidation of  l ab i l e  Cr(1I) species a t  an ine r t  electrode i s  expected t o  - 've 

only one peak(15). The second peak does not seem to  be due to  midat ion uf  Cr( l1) 

on carbon because: a) carbon i s  a poorer catalyst than lead/gold, and b) the area 

of  carbon i s  much greater than that o f  lead/gold and essential ly invariant. Yore 

research would be needed i n  order t o  understand t h i s  double peak behavior. 

Figure VI-7 i s  a multi-cycle voltamnogram (at  10 mV/sec scan rate) of the 

Cr(III)/HCl e lectro lyte obtained subsequent to  holding the potential of the working 

electrode a t  -620 mV f o r  a short time. The current a t  certain potentials i s  
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Figure VI-6: Single-Sweep Cyclic Voltamnogram of Chronic Chloride/Chromous 
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seen t o  decrease s l i g h t l y  on successive cycles. Note tha t  on each cycle, the 

d issolut ion potent ia l  o f  1 ead i s  exceeded. Nevertheless, extended cycl  i ng experiments 

(>ZOO cycles) showed tha t  although subt le changes i n  electrode behavior ? re  possible, 

the a b i l i t y  of Au/Pb on carbon f e l t  electrodes t o  reduce Cr ( I1 I )  and oxidize Cr( I1)  i s  

maintained. The unexplained double peaks on Cr(I1) oxidation por t ion appear t o  

1 have some correspondence t o  the cycling.. Further work i s  essential t o  understand 

t h i  s phenomena. 



V I I. BISMUTH: AN ALTERNATE ELECTROCATALY ST FOR CHROMIC CHLORI3E/CHROMOUS CHLORIDE 

Although the lead/gold system i s  adequate a t  the present time, i t  would be h igh ly  

desi rabl  2 t o  develop an a1 te rna t i  ve e lect rocata lyst  f o r  the chromi um redox react ion 

tha t  i s  even more active, has a higher overvol tage for  hydrogen evolut ion and i s  

stable (does not p la te  and deplate) . Therefore, i t  was considered worthwhile t o  
1 

conduct an exploratory invest igat ion i n  t h i s  program. Under the fo l  low-UD contract 

we expect t o  do a somewhat more quant i ta t i ve  invest igat ion. 

The f e a s i b i l i t y  o f  using bismuth f o r  e lect rocata lys is  o f  the C r ( I I I ) / C r ( I I )  redox 

couple was invest igated by the technique of potentiodynamic sweep vol tamnetry i n  a 

hal f  c e l l .  Bismuth i s  an a t t r a c t i v e  material .  I t  i s  thermodynamically stable a t  

the p o t e n t i a ; ~  o f  in terest ,  and i t  was shown t o  have a r e l a t i v e l y  high hydrogen 

overvol tage. 

A. Stabi 1 i ty: 

An experiment was performed i n  which about pb2+ was added to  a 

solut ion containing about 10% ~ i ~ +  i n  1N HCl . A f te r  a sweep from 0.0 t o  -1.2 r o l  t s  

was performed, a sweep was performed from -1.2 vo l ts  t o  about +!I. 5 vo l ts  (SCE) , and 

an I vs. E curve from -0.6 vo l t s  t o  +0.5 vo l ts  was recorded, which i s  shown i n  Figure 

V I T - 1 .  Two anodic deplating peaks are present. Peak (1) i s  the lead deplating peak 

which begins a t  a p o t e n t i a l  o f  about -0.55 vol ts ,  whi ie peak ( 2 )  i s  the bismuth de- 

p la t i ng  peak which begins a t  about -0.17 vo l ts  vs. SCE. The resu l ts  obtained here 

indicate a s ign i f i can t  advantaqe i n  the more pos i t i ve  deplating potent ia l  o f  bismuth 

as compared w i th  tha t  o f  lead. This i s  consistent w i th  Pourbaix(16 ) and warranted 

fu r ther  invest ig-  (. t' ion. 

B. Bismuth on Carbon Electrode: 

Linear sweep vol tamnetry was performed w i  th the o i d  carbon f e l t  sample i n  

a solut ion of 0.5M CrC13 and 10% BiC13 i n  1N HCI (Solut ion E) . The electrode 

was rinsed wi th d i s t i l l e d  water and a solut ion of fresh 1N HCI  w i th  ~ o - ~ M  BiC1 
3 

(Solution F) was sutac i  tuted and the sweep repeated. The resu l ts  are given i n  
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Figure VII-2 along w i th  the resu l ts  of s im i l a r  experiments w i th  PbCl We can see 2 '  
tha t  I?; on carbon electrode has Cr ( I I1 )  reduction a c t i v i t y  tha t  i s  s im i l a r  t o  Pb on 

carbon. Hydrogen evolut ion on the bismuth electrode i s ,  however, greater than on 

the lead electrode. 

C. Gold/Bismuth Electrode: 
I 

This electrode i s  anaiagous t o  the sold/lead electrode i n  t ha t  gold was 

thermally deposited and B i ( I I 1 )  ions were added t o  the e lect ro ly te.  The c y c l i c  v o l t -  

amnogram shown i n  Figure VI I -3 was s ta r ted  a t  -300 mV (SCE) and reversed a t  -1.OV. 

The reverse sweep was in terruptea a t  about -300 mV and the current allowed to  go t o  

zero. The s,ale was expanded, and an anodic s t r ipp ing  vol tamnogram was obtained. 

Only 13% o f  the i n i t i a l  50 ug bismuth i n  so lut ion was str ipped frm the electrode. The 

greater stabi l i t y  of bismuth canpared t o  I sad may have some prac t ica l  appl i c a t i  ons (e. g . 
making assmbly-ready electrodes). The p o s s i b i l i t y  o f  determining d i r e c t l y  the 

amount of bismuth responsible fo r  a cer ta in  C r f  I I I )/Cr( I I ) po lar iza t ion  curve may ease 

the task o f  optimizing t h i s  system. Judging from the Cr(1I)  oxidat ion peak s ign i -  

f i can t  amounts o f  Cr ( I I1 )  reduction i s  apparent. ' However, the lack of a wel l  defi.:ed 

reduction peak suggests over1 ap w i th  hydrogen evol ution. Further i nves ti gat ions 

w i  t h  higher b i  smuth 1 oad; ng are recomnertded. 

During both these experiments we note tha t  on bismuth e lect rocata lyst  the on- 

se t  o f  Cr (1 I I )  reduction appears to  be a t  s -450 mV compared t o  % -600 my on lead. 
( 4 )  A reexamination o f  f igures IV-7 & IV-8 o f  our previous repor t  also show s im i l a r  

e f fec ts  with bismuth. 140 d e f i n i t e  conclusions can be made regarding the cause of 

t h i s  e f fec t .  
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Potenti a1 , (Volts vs . SCE) 
Figure VII-2: Hydrogen Evolution and Chromic Ion Reduction On 

Old Carbon F e l t ,  With Lead Chloride (C and D) and 
With Bismuth Chloride (E and F ) .  Sweeps D and F 
Yere Taken After Sweeps C and E,  Respectively. 



Figure VII-3: Gold/Bismuth Electrode i n  0.2M Chromic Chloride, 
1.a Hydrochloric Acid 



V I  I I. SIGNIFICANT RESULTS AND CONCLUSIONS 

2 1: It i s  confirmed tk;t trace amounts of gold (10-25 ug Au/m ) and lead 

( s  100 IJ~/CII?) on highly porous carbon f e l t  provided inexpensive, e f f i c i e n t  and 

practical electrodes that  offer advantages of each metal without i t s  dqtadvantages. 

2. Character4 zation of d i  fferent carbon f e l t  materials revealed s igni  t i  cant 
! 

variations i n  the i r  physical and surface chemical properties a: well as t he i r  elect=- i 
1 

chemical behavior. As a result, the major cause for improper catalyzation was iden- 

t i f i e d  t o  be non-uniformity of the vendor supplied fe l t s .  

3. As a resu l t  o f  t h i s  program, catalyzation techniques were developed that  

were found to  overcane most variations i n  the fe l t .  A n i t r i c  acid soak as a normal- 

izat ion treatwent for carbon showed signif icant improvements. Subsequently, schematic- 

a l l y  shown i n  Figure V I I I - 1 ,  the improved catalyzation technique, the alcohol 

assisted gold impregnation cosllbi ned w i t h  a KOH precleani ng steq, produced electrodes 

which do not evolve measurable amounts o f  hydrogen and show excellent ac t i v i t y  f o r  the 

chrcnnimn redox reaction. An important aspect of t h i s  method of preparation i s  that  

i t  produces m'l behaved electrodes fm most l o t s  of f e l t s  t r ied,  so that  character- 

izat ion o f  the f z l t  i s  no longer a major problem. These procedures seem ent i re ly  

satisfactory f o r  small ce l l s  and large single cel ls .  Further refinements w i l l  be 

needed, however, to  achieve second order improvements such as to  minimize the blue 

hysteresis effects. 

4. Differences observed i n  the cyc l ic  voltanmetry scans can be correlated 

with the behavior o f  laboratory ce l ls  a t  MA-LeRC. Because o f  the high internal  

surface area o f  the f e l t  and the high internal resistance, experimental procedures 

must be standardized i n  order t o  make meaningful c m r i s o n s .  Pased on the cyc l i c  

vol tamnetric analysis rvles o f  Jon, gold and lead were ident i f ied and sre 

summarized i n  Table V I I I - 1 .  

5. A technical grade chromic chloride solut ion was found acceptable i n  the 

short tern tests, but upon repeated cycl ing degradation was observed. We be1 ieve 
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that  impurities, yet  to  be identi f ied, are the cause. It i s  concluded, a t  least  

during t h i s  stage of development, reagent grade chromic chloride should be used. 

6. Based on exploratory observations, bismuth was found t o  be stable and 

t o  have ac t i v i t y  for Cr( I I I ) /Cr ( I I )  redox reaction. Further work i s  necessary to 

determice i t s  su i t ab i l i t y  f o r  the redox battery. 

The following are same observations made during the course of t h i s  study; 

defini te conclusions w i  th respect to these observations are beyond the present scope 

o f  the data and must await further data accumulatio~r on more and different types o f  

catalysts and electrodes. 

1. An electtode after an exposure t o  chromium solut ion exhibited higher 

hydrogelr evolution currents than i t  d id  before such an exposure. Does chromium 

adsorbed on carbon (o r  gold) surface enhance hydrogen evolution? 

2. Frequently, but not consistently, lead deplating from bare carbon (or 

gold on carbon f e l t )  showed two (or  more) anodic peaks. This could be explained by 

ei ther (a) deplating of two crystal1 ine forms o f  lead or  (b) deplating from two 

"types" of substrate surfaces, that  i s ,  inhomogeneous nature r; carbon surface. 

3. Again,frequently, but not consistently, the onset o f  lead deposition 

occurred a t  less negative potentials on gold activated c +on f e l t  than for the bare 

carbon f e l t .  4e believe t h i s  along w i t h  a corresponding nge i n  the deplating 

t a i l  t o  be evidence o f  preferential  lead deposi t i a n  on gold and higher s t a b i l i t y  o f  

lead on the gold surface than on the carbon surface. 

4. A? though the sens i t iv i ty  of our instrumentation could measure submonolayer 

amounts of lead, we found no evidence o f  underpotential deposi t i on  (UPD) o f  lead 

either on carbon or  on gold. I n  HC1 medium, lead complexes with chloride ions and 

perhaps does not undergo UP0 . 



5. Under the lead loading conditions investigated, i t  appears that  Cr( I1I)  

reduction depends on the amount of lead plated which, under the ident ical  deposition 

conditions, varied wi th the type o f  fe1 t o r  gold deposition procedure used. 

+3 6. Cyc1 i c  vol tametry  i n  a solut ion containing predani nantly Cr(H20)6 gave 

very l i t t l e  reac t i v i t y  on lead on carbon surface. The s imi lar  t es t  i n  a solut ion . 

+2 containing predominantly Cr(HP)5 C1 gave, on the f i r s t  cycle, very good reac t i v i t y  

which steadily decrersed on subsequent rapid cycl i ng , approaching the poor perform- 
+3 

It i s  suggested that  under the cycl ing conditions used, the ance o f  M e  Cr(Hf )6 . 
reactive species, Cr(HZO)5 CI", w i th in  the f e l t  was gradually converted t o  the in-  

act ive species, c ~ ( H ~  )b3. This interconversion may play some ro le  i n  a pract ical  

battery, but not t o  t h i s  extent. 



I X .  RECOPME3DATIONS FOR FUTURE WORK: 

1. A comparison of the o ld  carbon f e l t  and graphite f e l t  showed that  the o ld  

carbon f e l t  that had consistently given good electrodes which behaved very much l i k e  a - 
graphite fe l  t; thei r physical characteristics, surface chemistry as measured by pH 

of  the soaking water (Table V - 1 )  and electrochemical behavior (Figure V-5)  were 

very similar. From these results i t  i s  reasonable t o  postulate that  the NASA o ld  

carbon f e l t  mjght have seen higher processing temperature and, therefore, be a 1 i t t l e  

more graphit ic i n  nature. Discussions wi th Fiber Materials, Inc. (17), fur ther 

confi n th i s  possibi 1 i ty; these fe l t s  are produced f o r  insulat ion purposes and a 
' ; 

close control on processing temperature i s  neither requi red nor maintained. A1 though 
j 

preliminary investigations by x-ray d i f f rac t ion (XRD) a t  NASA-LcRC d id  not show ally 

s igni f icant  differences between the good and bad carbon fe l ts ,  high resolution X R D  analysis 

may bring out systematic differences i n  the inter layer spacings('@' and the degree of 

graphitization. We recomnerd i ivestigating effects of the f e l t  processing temperature 
1 -  

on the electrode behavior t o  establ i sh the most desirable processing temperature. . , 

2. It was demonstrated that  trace amounts of gold and lead deposited on carbon 1 i 
f e l t  provided e f f i c i en t  and practical electrodes . Prel i m i  nary investigations re- 

2 2 vealed, for example, that  too l i t t l e  (4 ug Au/an ) and too much (>60 ug A u l a  ) gold 

. yielded poor electrodes. Effects o f  various gold and lead loadings need further I 
investigation t o  define the optimum quantit ies of lead and gold necessary t o  suppress 

hydmgen evolution and t o  maximi ze Cr(1 I I )  / C r ( I  I ) redox reaction. 

3. A1 though the alcohol assisted catalyzati ,,I procedure seem sat i  sfactory , I 
further r e f i  nenents are recomnended t o  achieve (a) better d is t r ibut ion of highly 

dispersed gold part ic les and (b) other second order sys tm improvements such as to  

minimize the open c i r c u i t  hysteresis and discharge voltags dip that are believed t o  

be caused by the d i f ferent  complexes o f  Cr( I I1) .  

4.  Investigations of  mu1 t i p l e  peaks on the oxidation port ion o f  cyc l ic  vo l t -  

amnetry and electrochemistry of chloride complexes o f  Cr( I! I) also doserve further 



attention and should contr ibute towards optimization of the chromium electrodes. 

5. We further recomnend that  investigations be continued t o  search for  newer 

electrocatalysts and catalyzation techniques which may provide fur ther  improvements 

i n  the chronium electrodes and increase the comnercial v i a b i l i t y  o f  i r on  chromium 

redox flow systems f o r  bulk energy storage applications. 

6. Final ly, i t  would be highly desirable t o  develop a cost effective manufac- 
. 

tur ing technology t o  fabricate the alectrodes f o r  the iron/chromium redox ce l l s  as 

item o f  conmerce; that  i s ,  an abi 1i t y  t o  del iver "assembly ready" electrodes t o  

comnerci a1 c e l l  developers . 
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APPENDIX A 

STANDARD THERMAL GOLD PLATING METHOD 

2 1. Heat 14.5 cm projected area sample of carbon f e l t  i n  concentrated 

H2S04 for 30 minutes B 10oOt. 

2. Rinse wi th d i s t i l l e d  water and damp dry. 

3. Soak i n  1.25 x l ~ - ~ r n  A U ~ +  solut ion overnight. 

4. Drain on paper towel for  about 30 minutes. 

5. Dry i n  70' t o  8 0 ' ~  oven. Turn each 4 hour for 3 hours. 

6. Heat i n  furnace for 2 hours a t  260'~. 



APPENDIX B 

ALCOHOL .ASS ISTEO GOLD DEPOSIT ION HETHOO FOR MAKING FELT ELECTRODES 

Major causes for poor performing goldllead on f e l t  electrodes are non-uniforrr 

gold take up and uneven d is t r ibut ion of gold. It i s  believed that  "as received" 

carbon fe l  t s  have 1 ocal i zed reactive and hydrophobic regions . Improved electrodes 

were made by precleaning carbon fe l t s  and the use of alcohol t o  help gold solut ion 

t o  uniformly wet the carbon surface. The procedure given below resulted from . 
j o i n t  efforts by Giner, Inc. and NASA-LeRC. A1 though evolutionary and not 

necessarily optimum, t h i s  process has yielded the best performing electrodes t o  

aate. 
2 Square 14.5 cm samples were cut from carbon f e l t  obtained from the 

mant.*actcrer and soaked i n  methyl alcohol f o r  30 minutes, rinsed i n  
tap water and damp dried wi th laboratory wipes. The f e l t  i s  cleaned 
by. heating i n  45% KOH (approximately) a t  IOOOC for two hcurs. 

The f e l t  i s  rinsed successively i n  tap and deionized water, and then 
soaked i n  deionized water overnight. The f e l t  i s  damp dried and moistened 
evenly with 0.22cc/an2 o f  electrode o f  a 25% H20-75% methznol solution 
containing 62.5pg/ml o f  HAuC13*3HzO. The f e l t  i s  allowed to  stand 
overnight i n  contact wi th t h i s  solution i n  the dark. It i s  then dried 
i n  an oven a t  lOOoC f o r  2-3 hours, heated f o r  235 hours a t  2 6 0 ~ ~ - 2 7 0 0 ~  
i n  the furnace, wetted wi th 3.1 HC1, and placed i n a redox ce l l  . 

We believe that cleaning f e l t s  with hot concentrated KOH w i l l  "normalize" the 

f e l t s  by oxidizing the excess reducing groups. Alcohol plays two roles t o  provide 

uniform and f ine distr ibut ion.  Fi rst ,  because it wets carbon (or graphite) surface 

very well, i t makes the ent i re surface available fcr  gold deposition. Second, 

a1 coho1 s (methanol , ethanol and i spropanol ) are known to  reduce acidic solutions 

of gold cnloride t o  produce very f ine part icles of col lo idal  gold that  would 

adsorb imnadiately on the surface of the carbon substrate. Such a deposition 

provides spat ia l ly  uniform d is t r ibut ion of highly dispersed gold part ic les which 

are not affected by the drying process. 



Before oven drying, i t  has been a present pract ice t o  press the  f e l t  

electrode wi th  a f l a t  glass object  t o  d i s t r i b u t e  the gold solut ion uniformly over 

the electrode. We recomnend tha t  a preferred method t o  ass!st uniform d i s t r i b u t i o n  

o f  the gold solut ion on the electrode woulu be t o  subject gold so lu t ion  soaked 

electrodes t o  u l t rason ic  vibrat ions. This can eas i l y  be achieved by, f o r  example, 

placing a pyrex plate, w i t h  gold solut ion soaked fe l t ,  i n  an u l t rason ic  cleaner 

f o r  shor t  times. 
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